- VisualStudio2022插件的安装及使用-编程手把手系列文章
- pprof-在现网场景怎么用
- C#实现的下拉多选框,下拉多选树,多级节点
- 【学习笔记】基础数据结构:猫树
标题:Deep hierarchical sorting networks for fault diagnosis of aero-engines 。
期刊:Computers in Industry (中科院1区top, JCR Q1, IF=8.2) 2024年12月发表 。
原文链接:https://doi.org/10.1016/j.compind.2024.104229 。
原文引用格式:Jinlei Wu, Lin Lin, Dan Liu, Song Fu, Shiwei Suo, Sihao Zhang, Deep hierarchical sorting networks for fault diagnosis of aero-engines, Computers in Industry, Volume 165, 2025, 104229, ISSN 0166-3615, https://doi.org/10.1016/j.compind.2024.104229 。
前言 。
本文开发了一种高效的故障诊断框架FSHSM-PCNN,用于进行航空发动机故障诊断,该架构由一个新提出的基于故障影响力的分层排序模块(FSHSM)和并行卷积神经网络组成。其中,FSHSM用于对状态点数据按照其对故障诊断的影响力进行分层排序,以捕获不同时间点数据间的协同效应;并行卷积神经网络分别以原始样本和经过排序模块排序后的样本作为输入,获取数据的时序状态信息和协同信息,合并后的特征用于进行航空发动机故障的准确诊断.
1. 论文解决的问题 。
2. 论文贡献 。
3. 方法框架 。
架构可分为三部分:数据预处理、状态点数据分层排序、并行卷积神经网络特征提取。数据预处理主要包含数据介绍、数据标准化、样本构造等,下面对所提架构以及基础模型进行介绍.
3.1 所提方法架构 。
(1) 状态点数据分层排序模块FSHSM 。
用于获取不同时间点数据对航空发动机故障诊断的故障影响力层级,以在同层级中加强不同时间点数据间的协同效应.
(2) 并行卷积神经网络PCNN 。
用于获取数据的时序状态特征和协同强化特征,以深入挖掘数据中包含的故障信息,提高故障诊断精度.
。
具体的实现步骤如下所示:
① 信号形貌指标提取:应用最大池化和平均池化计算状态点数据的最大值和平均值,以此作为信号形貌指标.
② 信号形貌指标索引值分层排序:以最大值和平均值为目标函数,对状态点数据的索引值进行分层排序.
③ 样本内部数据重新排序:基于②得到的排序索引,对样本内部的状态点数据按照索引映射重新排序,样本内部形成不同故障影响力等级的区域.
④ 时序状态信息提取:第一个卷积网络从原始样本中通过学习提取时序状态信息.
⑤ 强化协同信息提取:另一个并行的卷积网络从排序后的样本中提取拥有不同影响力等级的数据间的强化协同信息.
⑥ 特征融合及分类:将⑤和⑥中的信息进行拼接并分类.
⑦ 损失计算及反向传播.
3.2 基础模型介绍 。
3.2.1 快速非支配排序算法 (FNSA) 。
快速非支配排序(Fast Non-Dominated Sorting)算法是多目标优化中常用的一种排序方法,尤其在遗传算法中应用广泛(如NSGA-II算法)。它的目标是将种群中的个体根据非支配关系进行排序,以便选出更优的个体进行选择和交叉.
在多目标优化问题中,一个个体被称为支配另一个个体,若其在所有目标上都优于或等于另一个个体,并且至少在一个目标上严格优于另一个个体。非支配排序的过程是将种群中的个体分成不同的等级,每个等级包含了一组非支配的个体.
快速非支配排序的基本步骤是:
(1) 对于种群中的每个个体,计算其被其他个体支配的情况.
(2) 将不被任何个体支配的个体放入第一层(等级0).
(3) 对于第一层的每个个体,查找它支配的个体,并将这些个体加入下一层.
(4) 重复此过程,直到所有个体都被分配到某一层,最终得到每个个体的排序.
本研究中仅涉及两个目标函数(最大值xi和平均值xj),最大化任意两个解决方案只存在两种情况:xi支配xj或xi与xj互不支配.
3.2.2 一维卷积神经网络 。
一维卷积神经网络(1DCNN)是一种用于处理序列数据的深度学习模型,通过滑动卷积核在输入序列上提取局部特征,常用于时间序列分析、自然语言处理和语音识别等任务。它通过卷积层提取特征、池化层降低维度,并最终通过全连接层进行分类或回归。相比传统的全连接网络,1D-CNN能够减少计算复杂度并提高模型的鲁棒性,适用于捕捉序列数据中的局部模式。所选用的1DCNN除了拥有卷积层和池化层外,在卷积层和池化层中间还有批归一化层和激活函数,目的是为了解决深度神经网络中的梯度消失和梯度爆炸问题,并引入非线性特征,使得网络能够学习到更加复杂的映射关系.
4. 实验及结果 。
作者进行了三种实验,分别为消融实验、不均衡数据集验证实验、独立性验证实验。消融实验证明了所提排序模块FSHSM的增加,以及并行卷积神经网络的设计,是非常有效的;不均衡数据集验证实验证明了所提方法在解决不均衡样本上具有一定的优势;独立性验证实验可以说明,所提的FSHSM能够作为一个简捷的模块进行使用,可以无缝衔接到现有的深度学习模块中并且提高模型的学习能力.
具体内容见原文的Experiment and discussion部分:https://doi.org/10.1016/j.compind.2024.104229 。
最后此篇关于用于航空发动机故障诊断的深度分层排序网络的文章就讲到这里了,如果你想了解更多关于用于航空发动机故障诊断的深度分层排序网络的内容请搜索CFSDN的文章或继续浏览相关文章,希望大家以后支持我的博客! 。
这与 Payubiz payment gateway sdk 关系不大一体化。但是,主要问题与构建项目有关。 每当我们尝试在模拟器上运行应用程序时。我们得到以下失败: What went wrong:
我有一个现有的应用程序,其中包含在同一主机上运行的 4 个 docker 容器。它们已使用 link 命令链接在一起。 然而,在 docker 升级后,link 行为已被弃用,并且似乎有所改变。我们现
在 Internet 模型中有四层:链路 -> 网络 -> 传输 -> 应用程序。 我真的不知道网络层和传输层之间的区别。当我读到: Transport layer: include congesti
很难说出这里要问什么。这个问题模棱两可、含糊不清、不完整、过于宽泛或夸夸其谈,无法以目前的形式得到合理的回答。如需帮助澄清此问题以便重新打开,visit the help center . 关闭 1
前言: 生活中,我们在上网时,打开一个网页,就可以看到网址,如下: https😕/xhuahua.blog.csdn.net/ 访问网站使用的协议类型:https(基于 http 实现的,只不过在
网络 避免网络问题降低Hadoop和HBase性能的最重要因素可能是所使用的交换硬件,在项目范围的早期做出的决策可能会导致群集大小增加一倍或三倍(或更多)时出现重大问题。 需要考虑的重要事项:
网络 网络峰值 如果您看到定期的网络峰值,您可能需要检查compactionQueues以查看主要压缩是否正在发生。 有关管理压缩的更多信息,请参阅管理压缩部分的内容。 Loopback IP
Pure Data 有一个 loadbang 组件,它按照它说的做:当图形开始运行时发送一个 bang。 NoFlo 的 core/Kick 在其 IN 输入被击中之前不会发送其数据,并且您无法在 n
我有一台 Linux 构建机器,我也安装了 minikube。在 minikube 实例中,我安装了 artifactory,我将使用它来存储各种构建工件 我现在希望能够在我的开发机器上做一些工作(这
我想知道每个视频需要多少种不同的格式才能支持所有主要设备? 在我考虑的主要设备中:安卓手机 + iPhone + iPad . 对具有不同比特率的视频进行编码也是一种好习惯吗? 那里有太多相互矛盾的信
我有一个使用 firebase 的 Flutter Web 应用程序,我有两个 firebase 项目(dev 和 prod)。 我想为这个项目设置 Flavors(只是网络没有移动)。 在移动端,我
我正在读这篇文章Ars article关于密码安全,它提到有一些网站“在传输之前对密码进行哈希处理”? 现在,假设这不使用 SSL 连接 (HTTPS),a.这真的安全吗? b.如果是的话,你会如何在
我试图了解以下之间的关系: eth0在主机上;和 docker0桥;和 eth0每个容器上的接口(interface) 据我了解,Docker: 创建一个 docker0桥接,然后为其分配一个与主机上
我需要编写一个java程序,通过网络将对象发送到客户端程序。问题是一些需要发送的对象是不可序列化的。如何最好地解决这个问题? 最佳答案 发送在客户端重建对象所需的数据。 关于java - 不可序列化对
所以我最近关注了this有关用 Java 制作基本聊天室的教程。它使用多线程,是一个“面向连接”的服务器。我想知道如何使用相同的 Sockets 和 ServerSockets 来发送对象的 3d 位
我想制作一个系统,其中java客户端程序将图像发送到中央服务器。中央服务器保存它们并运行使用这些图像的网站。 我应该如何发送图像以及如何接收它们?我可以使用同一个网络服务器来接收和显示网站吗? 最佳答
我正在尝试设置我的 rails 4 应用程序,以便它发送电子邮件。有谁知道我为什么会得到: Net::SMTPAuthenticationError 534-5.7.9 Application-spe
我正在尝试编写一个简单的客户端-服务器程序,它将客户端计算机连接到服务器计算机。 到目前为止,我的代码在本地主机上运行良好,但是当我将客户端代码中的 IP 地址替换为服务器计算机的本地 IP 地址时,
我需要在服务器上并行启动多个端口,并且所有服务器套接字都应在 socket.accept() 上阻塞。 同一个线程需要启动客户端套接字(许多)来连接到特定的 ServerSocket。 这能实现吗?
我的工作执行了大约 10000 次以下任务: 1) HTTP 请求(1 秒) 2)数据转换(0.3秒) 3)数据库插入(0.7秒) 每次迭代的总时间约为 2 秒,分布如上所述。 我想做多任务处理,但我
我是一名优秀的程序员,十分优秀!