sách gpt4 ai đã đi

opencv - 尝试创建我的Haartraining OpenCV

In lại 作者:行者123 更新时间:2023-12-02 17:51:16 26 4
mua khóa gpt4 Nike

我正在尝试使用以下命令创建级联分类器:

haartraining -data haarcascade -vec samples.vec -bg negatives.dat -nstages 20 -nsplits 2 -minhitrate 0.999 -maxfalsealarm 0.5 -npos 1000 -nneg 600 -w 20 -h 20 -nonsym -mem 2048 -mode ALL

我使用此命令从一个图像创建了1500个样本:
createsamples -img foto.png -num 1500 -bg negatives.dat -vec samples.vec -maxxangle 0.6 -maxyangle 0 -maxzangle 0.3 -maxidev 100 -bgcolor 0 -bgthresh 0 -w 20 -h 20

这是阶段3的输出:

Tree Classifier
Stage
+---+
| 0|
+---+

Number of features used : 125199

Parent node: NULL

*** 1 cluster ***
POS: 1000 1000 1.000000
NEG: 600 1

**BACKGROUND PROCESSING TIME: 0.02**

Precalculation time: 41.39

+----+----+-+---------+---------+---------+---------+
| N |%SMP|F| ST.THR | HR | FA | EXP. ERR|
+----+----+-+---------+---------+---------+---------+
| 1|100%|-|-0.989933| 1.000000| 0.988333| 0.003125|
+----+----+-+---------+---------+---------+---------+
| 2|100%|-| 0.006064| 1.000000| 0.000000| 0.000000|
+----+----+-+---------+---------+---------+---------+

Stage training time: 40.66
Number of used features: 4

Parent node: NULL
Chosen number of splits: 0

Total number of splits: 0

Tree Classifier
Stage
+---+
| 0|
+---+
0


Parent node: 0

*** 1 cluster ***
POS: 1000 1000 1.000000
NEG: 600 0.0169943

**BACKGROUND PROCESSING TIME: 0.23**

Precalculation time: 37.19

+----+----+-+---------+---------+---------+---------+
| N |%SMP|F| ST.THR | HR | FA | EXP. ERR|
+----+----+-+---------+---------+---------+---------+
| 1|100%|-|-0.981031| 1.000000| 1.000000| 0.007500|
+----+----+-+---------+---------+---------+---------+
| 2|100%|-| 0.005864| 1.000000| 0.010000| 0.003750|
+----+----+-+---------+---------+---------+---------+

Stage training time: 36.25
Number of used features: 4

Parent node: 0
Chosen number of splits: 0

Total number of splits: 0

Tree Classifier
Stage
+---+---+
| 0| 1|
+---+---+
0---1

Parent node: 1

*** 1 cluster ***
POS: 1000 1000 1.000000
NEG: 600 0.000522

**BACKGROUND PROCESSING TIME: 7.54**

Precalculation time: 40.80

+----+----+-+---------+---------+---------+---------+
| N |%SMP|F| ST.THR | HR | FA | EXP. ERR|
+----+----+-+---------+---------+---------+---------+
| 1|100%|-|-0.895043| 1.000000| 1.000000| 0.051875|
+----+----+-+---------+---------+---------+---------+
| 2|100%|-|-1.818561| 1.000000| 0.978333| 0.026250|
+----+----+-+---------+---------+---------+---------+
| 3|100%|-|-2.601195| 1.000000| 0.676667| 0.010000|
+----+----+-+---------+---------+---------+---------+
| 4|100%|-|-1.673473| 1.000000| 0.033333| 0.003125|
+----+----+-+---------+---------+---------+---------+

Stage training time: 80.58
Number of used features: 8

Parent node: 1
Chosen number of splits: 0

Total number of splits: 0

Tree Classifier
Stage
+---+---+---+
| 0| 1| 2|
+---+---+---+
0---1---2

Parent node: 2

*** 1 cluster ***
POS: 1000 1000 1.000000
NEG: 600 4.19496e-005

**BACKGROUND PROCESSING TIME: 93.92**

Precalculation time: 40.82

+----+----+-+---------+---------+---------+---------+
| N |%SMP|F| ST.THR | HR | FA | EXP. ERR|
+----+----+-+---------+---------+---------+---------+
| 1|100%|-|-0.955309| 1.000000| 1.000000| 0.059375|
+----+----+-+---------+---------+---------+---------+
| 2|100%|-|-1.676803| 1.000000| 0.931667| 0.065000|
+----+----+-+---------+---------+---------+---------+
| 3|100%|-|-1.313002| 1.000000| 0.233333| 0.010625|
+----+----+-+---------+---------+---------+---------+

Stage training time: 63.21
Number of used features: 6

Parent node: 2
Chosen number of splits: 0

Total number of splits: 0

Tree Classifier
Stage
+---+---+---+---+
| 0| 1| 2| 3|
+---+---+---+---+
0---1---2---3


Parent node: 3

*** 1 cluster ***
POS: 1000 1000 1.000000
NEG: 600 1.23118e-005

**BACKGROUND PROCESSING TIME: 327.57**

Precalculation time: 41.54


+----+----+-+---------+---------+---------+---------+
| N |%SMP|F| ST.THR | HR | FA | EXP. ERR|
+----+----+-+---------+---------+---------+---------+
| 1|100%|-|-0.939509| 1.000000| 1.000000| 0.054375|
+----+----+-+---------+---------+---------+---------+
| 2|100%|-|-1.812912| 1.000000| 0.821667| 0.047500|
+----+----+-+---------+---------+---------+---------+
| 3|100%|-|-0.907906| 1.000000| 0.128333| 0.016875|
+----+----+-+---------+---------+---------+---------+

Stage training time: 61.52
Number of used features: 6

Parent node: 3
Chosen number of splits: 0

Total number of splits: 0

Tree Classifier
Stage
+---+---+---+---+---+
| 0| 1| 2| 3| 4|
+---+---+---+---+---+
0---1---2---3---4


Parent node: 4

*** 1 cluster ***
POS: 1000 1000 1.000000
0%

我的问题是:

后台处理时间增长这么快是正常现象?要到达第20阶段,我需要花几个星期!有什么问题吗?

1 Câu trả lời

还可能需要更长的时间。 OpenCV附带预先计算的级联文件是有原因的。

关于opencv - 尝试创建我的Haartraining OpenCV,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/20581785/

26 4 0
Bài viết được đề xuất: android - 各种光线下的阈值人脸图像
Bài viết được đề xuất: Android OpenCV 优化 - 线检测很慢 Hough Lines
Bài viết được đề xuất: python - calcOpticalFlowPyrLK 丢失单个跟踪点
Bài viết được đề xuất: c++ - 删除边界框内的边界框以进行数字识别
行者123
Hồ sơ cá nhân

Tôi là một lập trình viên xuất sắc, rất giỏi!

Nhận phiếu giảm giá Didi Taxi miễn phí
Mã giảm giá Didi Taxi
Giấy chứng nhận ICP Bắc Kinh số 000000
Hợp tác quảng cáo: 1813099741@qq.com 6ren.com