Bài viết phổ biến của tác giả
- html - 出于某种原因,IE8 对我的 Sass 文件中继承的 html5 CSS 不友好?
- JMeter 在响应断言中使用 span 标签的问题
- html - 在 :hover and :active? 上具有不同效果的 CSS 动画
- html - 相对于居中的 html 内容固定的 CSS 重复背景?
这在 python 中如何完成?
Để ý:我对 python 为(统计)幂函数计算提供的函数感到非常困惑:(。
有人可以帮我在这里下订单吗?
statsmodels下有两个函数:
from statsmodels.stats.power import ttest_power, tt_ind_solve_power()
我们有:
tt_ind_solve_power(effect_size=effect_size, alpha=alpha, power=0.8, ratio=1, alternative='two-sided')
我们还有:
ttest_power(0.2, nobs=sampleSize, alpha=alpha, alternative='two-sided')
还有这段代码:
import statsmodels.stats.api as sms
es = sms.proportion_effectsize(prop1, prop2, method='normal')
n = sms.NormalIndPower().solve_power(es, power=0.9, alpha=0.05, ratio=2)
我在某处找到了这个例子,但它没有解释什么是 prop1 和 prop2!
每一个都给了我不同的值(value)观。
Cảm ơn
1 Câu trả lời
作为对上述问题的回答,我编写了这个计算功效与样本量的函数。
当调用 tt_ind_solve_power
时,您需要将一个参数保留为 None 以便进行计算。在下面的示例中,我将电源保持为 Không có
.
我希望有人会发现它有用,欢迎任何改进。
from statsmodels.stats.power import tt_ind_solve_power
from scipy.interpolate import interp1d
nhập matplotlib.pyplot dưới dạng plt
def test_ttest_power_diff(mean, std, sample1_size=None, alpha=0.05, desired_power=0.8, mean_diff_percentages=[0.1, 0.05]):
'''
calculates the power function for a given mean and std. the function plots a graph showing the comparison between desired mean differences
:param mean: the desired mean
:param std: the std value
:param sample1_size: if None, it is assumed that both samples (first and second) will have same size. The function then will
walk through possible sample sizes (up to 100, hardcoded).
If this value is not None, the function will check different alternatives for sample 2 sizes up to sample 1 size.
:param alpha: alpha default value is 0.05
:param desired_power: will use this value in order to mark on the graph
:param mean_diff_percentages: iterable list of percentages. A line per value will be calculated and plotted.
:return: None
'''
fig, ax = plt.subplots()
for mean_diff_percent in mean_diff_percentages:
mean_diff = mean_diff_percent * mean
effect_size = mean_diff / std
print('Mean diff: ', mean_diff)
print('Effect size: ', effect_size)
powers = []
max_size = sample1_size
if sample1_size is None:
max_size = 100
sizes = np.arange(1, max_size, 2)
for sample2_size in sizes:
if(sample1_size is None):
n = tt_ind_solve_power(effect_size=effect_size, nobs1=sample2_size, alpha=alpha, ratio=1.0, alternative='two-sided')
print('tt_ind_solve_power(alpha=', alpha, 'sample2_size=', sample2_size, '): sample size in *second* group: {:.5f}'.format(n))
khác:
n = tt_ind_solve_power(effect_size=effect_size, nobs1=sample1_size, alpha=alpha, ratio=(1.0*sample2_size/sample1_size), alternative='two-sided')
print('tt_ind_solve_power(alpha=', alpha, 'sample2_size=', sample2_size, '): sample size *each* group: {:.5f}'.format(n))
powers.append(n)
try: # mark the desired power on the graph
z1 = interp1d(powers, sizes)
results = z1(desired_power)
plt.plot([results], [desired_power], 'gD')
ngoại trừ Ngoại lệ như e:
print("Error: ", e)
#ignore
plt.title('Power vs. Sample Size')
plt.xlabel('Sample Size')
plt.ylabel('Power')
plt.plot(sizes, powers, label='diff={:2.0f}%'.format(100*mean_diff_percent)) #, '-gD')
plt.legend()
plt.hiển thị()
例如,如果您使用 mean=10 和 std=2 调用此函数,您将得到此图:
关于python - 如何在 python 中计算(统计)幂函数与样本大小?,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/47299824/
Tôi là một lập trình viên xuất sắc, rất giỏi!