sách gpt4 ăn đã đi

Giải pháp O(n) tiềm năng cho dãy con tăng dài nhất

In lại Tác giả: IT Lão Cao 更新时间:2023-10-28 21:01:32 30 4
mua khóa gpt4 giày nike

我试图回答这个问题,只使用递归(动态编程) http://en.wikipedia.org/wiki/Longest_increasing_subsequence

从这篇文章中,我意识到最有效的现有解决方案是 O(nlgn)。我的解决方案是 O(N),我找不到失败的案例。我包括了我使用的单元测试用例。

import static org.junit.Assert.assertEquals;
nhập java.util.ArrayList;
nhập java.util.Arrays;
nhập java.util.List;

import org.junit.Test;

public class LongestIncreasingSubseq {

public static void main(String[] args) {
int[] arr = {0, 8, 4, 12, 2, 10, 6, 14, 1, 9, 5, 13, 3, 11, 7, 15, 1};
getLongestSubSeq(arr);
}

public static List getLongestSubSeq(int[] arr) {
List indices = longestRecursive(arr, 0, arr.length-1);
List result = new ArrayList<>();
for (Integer i : indices) {
result.add(arr[i]);
}

System.out.println(result.toString());
trả về kết quả;
}

private static List longestRecursive(int[] arr, int start, int end) {
if (start == end) {
List singleton = new ArrayList<>();
singleton.add(start);
return singleton;
}

List bestRightSubsequence = longestRecursive(arr, start+1, end); //recursive call down the array to the next start index
if (bestRightSubsequence.size() == 1 && arr[start] > arr[bestRightSubsequence.get(0)]) {
bestRightSubsequence.set(0, start); //larger end allows more possibilities ahead
} else if (arr[start] < arr[bestRightSubsequence.get(0)]) {
bestRightSubsequence.add(0, start); //add to head
} else if (bestRightSubsequence.size() > 1 && arr[start] < arr[bestRightSubsequence.get(1)]) {
//larger than head, but still smaller than 2nd, so replace to allow more possibilities ahead
bestRightSubsequence.set(0, start);
}

return bestRightSubsequence;
}

@Bài kiểm tra
public void test() {
int[] arr1 = {0, 8, 4, 12, 2, 10, 6, 14, 1, 9, 5, 13, 3, 11, 7, 15, 1};
int[] arr2 = {7, 0, 9, 2, 8, 4, 1};
int[] arr3 = {9, 11, 2, 13, 7, 15};
int[] arr4 = {10, 22, 9, 33, 21, 50, 41, 60, 80};
int[] arr5 = {1, 2, 9, 4, 7, 3, 11, 8, 14, 6};
assertEquals(getLongestSubSeq(arr1), Arrays.asList(0, 4, 6, 9, 11, 15));
assertEquals(getLongestSubSeq(arr2), Arrays.asList(0, 2, 8));
assertEquals(getLongestSubSeq(arr3), Arrays.asList(9, 11, 13, 15));
assertEquals(getLongestSubSeq(arr4), Arrays.asList(10, 22, 33, 50, 60, 80));
assertEquals(getLongestSubSeq(arr5), Arrays.asList(1, 2, 4, 7, 11, 14));
}

}

由于关系 T(n) = T(n-1) + O(1) => T(n) = O(n),因此成本严格为 O(n)

任何人都可以找到失败的案例或存在任何错误吗?非常感谢。

更新:感谢大家指出我在之前实现中的错误。下面的最终代码通过了它曾经失败的所有测试用例。

这个想法是列出(计算)所有可能的递增子序列(每个从索引 i 开始,从 0 到 N.length-1)并选择最长的子序列。我使用内存(使用哈希表)来避免重新计算已计算的子序列 - 因此对于每个起始索引,我们只计算一次所有递增的子序列。

但是,在这种情况下,我不确定如何正式推导出 độ phức tạp thời gian - 如果有人能阐明这一点,我将不胜感激。非常感谢。

import static org.junit.Assert.assertEquals;
nhập java.util.ArrayList;
nhập java.util.Arrays;
nhập java.util.HashMap;
nhập java.util.List;
nhập java.util.Map;
import org.junit.Test;

public class LongestIncreasingSubsequence {

public static List getLongestSubSeq(int[] arr) {
List longest = new ArrayList<>();
for (int i = 0; i < arr.length; i++) {
List candidate = longestSubseqStartsWith(arr, i);
if (longest.size() < candidate.size()) {
longest = candidate;
}
}

List result = new ArrayList<>();
for (Integer i : longest) {
result.add(arr[i]);
}

System.out.println(result.toString());
cache = new HashMap<>(); //new cache otherwise collision in next use - because object is static
trả về kết quả;
}

private static Map> cache = new HashMap<>();
private static List longestSubseqStartsWith(int[] arr, int startIndex) {
if (cache.containsKey(startIndex)) { //check if already computed
//must always return a clone otherwise object sharing messes things up
return new ArrayList<>(cache.get(startIndex));
}

if (startIndex == arr.length-1) {
List singleton = new ArrayList<>();
singleton.add(startIndex);
return singleton;
}

List longest = new ArrayList<>();
for (int i = startIndex + 1; i < arr.length; i++) {
if (arr[startIndex] < arr[i]) {
List longestOnRight = longestSubseqStartsWith(arr, i);
if (longestOnRight.size() > longest.size()) {
longest = longestOnRight;
}
}
}

longest.add(0, startIndex);
List cloneOfLongest = new ArrayList<>(longest);
//must always cache a clone otherwise object sharing messes things up
cache.put(startIndex, cloneOfLongest); //remember this subsequence
return longest;
}

@Bài kiểm tra
public void test() {
int[] arr1 = {0, 8, 4, 12, 2, 10, 6, 14, 1, 9, 5, 13, 3, 11, 7, 15, 1};
int[] arr2 = {7, 0, 9, 2, 8, 4, 1};
int[] arr3 = {9, 11, 2, 13, 7, 15};
int[] arr4 = {10, 22, 9, 33, 21, 50, 41, 60, 80};
int[] arr5 = {1, 2, 9, 4, 7, 3, 11, 8, 14, 6};
int[] arr6 = {0,0,0,0,0,0,1,1,1,1,2,3,0,0,0,1,1,0,1,1,0,1,0,3};
int[] arr7 = {0,1,2,0,1,3};
int[] arr8 = {0,1,2,3,4,5,1,3,8};
assertEquals(getLongestSubSeq(arr1), Arrays.asList(0, 4, 6, 9, 13, 15));
assertEquals(getLongestSubSeq(arr2), Arrays.asList(0, 2, 8));
assertEquals(getLongestSubSeq(arr3), Arrays.asList(9, 11, 13, 15));
assertEquals(getLongestSubSeq(arr4), Arrays.asList(10, 22, 33, 50, 60, 80));
assertEquals(getLongestSubSeq(arr5), Arrays.asList(1, 2, 4, 7, 11, 14));
assertEquals(getLongestSubSeq(arr6), Arrays.asList(0,1,2,3));
assertEquals(getLongestSubSeq(arr7), Arrays.asList(0,1,2,3));
assertEquals(getLongestSubSeq(arr8), Arrays.asList(0, 1, 2, 3, 4, 5, 8));
}

public static void main(String[] args) {
int[] arr1 = {7, 0, 9, 2, 8, 4, 1};
System.out.println(getLongestSubSeq(arr1));
}

}

câu trả lời hay nhất

你的程序在这个测试用例中失败了

int[] arr5 = {0,0,0,0,0,0,1,1,1,1,2,3,0,0,0,1,1,0,1,1,0,1,0,3};

你的结果[0, 1, 3]不应该是[0,1,2,3]

关于java - 最长递增子序列的潜在 O(n) 解,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/21505522/

30 4 0
Chứng chỉ ICP Bắc Kinh số 000000
Hợp tác quảng cáo: 1813099741@qq.com 6ren.com
Xem sitemap của VNExpress